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ABSTRACT: In this paper we consider mixed two-loop electroweak corrections to the top
quark propagator in the Standard Model. In particular, we compute the on-shell renormal-
ization constant for the mass and wave function, which constitute building blocks for many
physical processes. The results are expressed in terms of master integrals. For the latter
practical approximations are derived. In the case of the mass renormalization constant we
find agreement with the results in the literature.
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1. Introduction

The outstanding precision reached at the CERN LEP and SLAC SLC triggered many
higher order calculations in the Standard Model (SM) of particle physics. In particular,
it happened for the first time that the experimental results were sensitive to the weak
part of the SM. Since at LEP and SLC real top quarks could not be produced, the main
emphasis of the theoretical investigations was put on processes with light quarks as external
particles. Heavy particles like the top quark only appeared virtually in intermediate states.
In many applications the masses of the light quarks can be neglected as compared to the
other mass scales, which results in a significant simplification of the resulting mathematical
expressions.

In a future International Linear Collider (ILC) [l the center-of-mass energy is high
enough to produce top quarks. The expected experimental precision requires on the the-
oretical side the inclusion of higher order corrections — both for the QCD and the elec-
troweak sector of the SM. This is particularly true for the threshold production of top
quark pairs, where the theoretical uncertainties of the second order QCD corrections are
still significant [f]. Thus, next to third-order QCD calculations (see, e.g., refs. [§—f]), also
electroweak corrections have to be investigated.

In this paper we focus on the two-loop mixed electroweak/QCD corrections to the
on-shell top quark propagator. Some sample diagrams are shown in figure fl. The top
quark mass renormalization constant has been evaluated in ref. [[J]. The contribution
from the scalar bosons has been considered in [}, f]. In this paper we confirm the results of



Figure 1: Sample diagrams contributing to the top quark propagator up to order aas. Next to
the Higgs boson also the gauge bosons W and Z and the corresponding Goldstone bosons can be
exchanged.

ref. [[]]. Furthermore, we compute the wave function renormalization constant to order cevs.
Practical approximations are derived for the diagrams with internal W and Z bosons' and
both the exact expression and handy approximations are computed for the Higgs boson
mass dependence.

The inverse fermion propagator can be decomposed as

STMq) = Z3 (¢ — Zmm + ¢ 1.(q) + ms) L+ Z37 (¢ — Zmm + ¢ Tr(q) + mTs) R,
(1.1)
with R = (1 +75)/2 and L = (1 —75)/2. m is the quark mass and Z,, and ZQL’R are the
mass and (left/right) wave function renormalization constants, respectively. The functions
Y, %g and Xg in eq. (1)) result from a convenient decomposition of the self energy ¥(q)
given by
2(q) = ¢ (RER(¢®) + LEL(¢%) + mZs(q?) - (1.2)

In the on-shell scheme one requires that S~!(q) vanishes for ¢> = m? which leads to
the following condition for the on-shell mass renormalization constant

1
z95 =1+ <25(m2) +5 (Z1(m?) +2R(m2))> . (1.3)
LOS . 1 Z;z,os

Requiring furthermore that the residuum is —1, provides a condition for Z,

2595 = “w1n) ~ 2 | Sn®) + 5 (S5(0n%) + S(m)

"Here and in the following we consider the W and Z boson always in combination with the corresponding
Goldstone bosons.



1
7105 — _sip(m?) — 2m? [zg(mQ) +3 (Z7,(m?) + ZR(m?))| - (1.4)
In these formulae it is understood that only the real part of the self energy functions is
taken.
In the practical calculation it is convenient to apply projectors in order to arrive at
scalar momentum integrals. This is achieved via

Zyn> = Tt (PnX(q))

)

q2=m?2
2y — 1 (B P2(0) | (1.5)
2=m?2
with
q 1
P,=-—+—
T 4q2 + 4m’
0 q 1
pho A 9?0 (4 1
2 2q? mn 0q? <4q2 + 4m> ’
0 q 1
Pt g 922 (4 [ 1) 1.6
2 2q? mn 0q> \ 4q2 * 4m (16)
In these formulae it is understood that the lower-order results are expressed in terms of
the bare parameters. In what follows we compute Z,%S and Z2L /ROS £ the top quark

neglecting the masses of the light quarks. Furthermore, we take the Cabibbo-Kobayashi-
Maskawa matrix to be diagonal.

The outline of the paper is as follows: In the next section we consider the classes
of Feynman diagrams which are relevant for our calculation and discuss the reduction
to a basic set of master integrals. The results for the master integrals appearing in our
calculation are discussed in appendix [J. In section P we present the renormalization
constant for the top quark on-shell mass. In particular we consider the relation between
the MS and pole mass and compare our results with the literature. In section | we move
on to the wave function renormalization constants. Finally, our findings are summarized

in section [§, which also contains the conclusions.

2. Reduction to master integrals

At order aa, one has to consider about 35 Feynman diagrams contributing to the fermion
propagator (cf. figure [I] for some sample diagrams). After the application of the projectors
the external momentum is set on the mass shell of the heavy quark, which leads to integrals
containing two scales, the quark mass and the boson mass. In this section they are denoted
by m and M, respectively.

We generate all one-particle irreducible Feynman diagrams contributing to the fermion
propagator with QGRAF [I(]. The application of q2e and exp [[1], [[J] identifies the topol-
ogy of the individual diagrams, adopts the notation and transforms the expressions into
FORM [[[3] notation.
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Figure 2: Graphical representation of the integral classes defined in eq. (@) Solid and dashed
lines carry mass m and M, respectively. Curly lines are massless.

It is convenient to map the QGRAF output for each diagram with the help of q2e and
exp to one of the following four classes of integrals?

Hf;(n,ng,ng, ng,ns) =
e2€7E dkd¥
(iﬂd/2)2 / (k;2 + qu)m (l2 + 2lq)”2(k‘2)”3((k _ l)2 _ M2)n4(l2)n5 3
Y]\7 (nly na2,n3, N4, ’I’L5) —
e2eve d4kd
(imd/2)2 / (k2 + 2kq)™ (12 — 21q)"2((k — )2 + 2q(k — 1)) (k2)ma (12 — M2)ns

H/ (ny,na, ng, na,ns) =

e2E d9kd9
(Z'ﬂ-d/2)2 / (k;2 + ijq)"l((l + q)2)n2(k2)n3((k _ l)2 _ M2)n4 (l2 + m2)”5 )
Wg (nla n2,ns,ny, TL5) =
27 d?kd?]
e e G T

where d = 4 — 2¢ is the space-time dimension. The corresponding graphical representation

(2.1)

can be found in figure . The integrals are defined in Minkowskian space and the ic
prescription is understood.

Within FORM we apply the projectors, identify the external momentum with the top
quark mass and decompose the numerators in terms of the denominators. This leads to a
large number of scalar integrals which differ from each other by the power of the individual
propagators.

A conventional way to reduce an arbitrary integral of a certain kind to a small set
of so-called master integrals is based on integration-by-parts [[[4], which provides relations
between several integrals of different complexity. The proper combination of these relations
leads to new ones, so that the iteration of this procedure can be used for a systematic
reduction of an arbitrary integral to a small set of master integrals.

In ref. [[§] an algorithm has been formulated that performs automatically the afore-
mentioned reduction for a given set of recurrence relations. Currently several implemen-

tations of this algorithm exist. However, to our knowledge, only one program is publicly

2For the application at hand it is possible to work with a smaller set of integral types. E.g., in the case
of H g we have ns < 0 for the self energies considered in this paper. However, in view of a future application
to on-shell vertices it is advantageous to consider a more general set-up.



available, ATR [[[§]. AIR is written in MAPLE, which certainly constitutes a serious restriction
for large-scale problems like, e.g., four-loop vacuum integrals [L]—R(]. Nevertheless, for
the problem at hand AIR is well suited to perform the reduction. It is straightforward to
compose an interface which, for a given class of Feynman diagrams (cf. eq. (R.1])), produces
the corresponding integration-by-parts relations, passes them to AIR and transforms the
output into a table that can be read into FORM. These tables can be used to express each
integral occuring in our expression in terms of a few master integrals.

At this point a comment concerning AIR is in order. Our experience with AIR shows
that there can be situations where the set of master integrals is not minimal, although the
complete set of recurrence relations has been provided. Consider, e.g., the integrals Yy,
with M = 0. It is well-known that only three master are needed for the computation of
the two-loop pure QCD corrections to ng. However, the naive application of AIR leads
to four master integrals. A straightforward inspection of the involved integrals makes it
possible to relate the additional master to the known ones. The same is also true for our
types of integrals.

For the diagrams where a neutral boson is exchanged one requires altogether nine
master integrals. Six of them either contain only one mass scale, are vacuum diagrams, or
consist of a product of two one-loop integrals. They read

Hy, = H}{;(1,1,0,0,0), Hy = H;(0,0,1,1,1), Hs = H};(1,1,0,1,0),
Vi =Yy (1,1,1,0,0), Ys =Yy (1,0,0,0,1), Y3 =Yy (1,1,0,0,1). (2.2)

Explicit analytic results are given in appendix [J. The remaining three master integrals
Hy = H}(1,0,0,1,1), Hs = H};(2,0,0,1,1), Yy =Yy(1,1,1,0,1), (2.3)

are less trivial. Analytic expressions for Hy, Hs and Y; can be found in ref. [[f]. More
precisely one has

H4 — J012(1a 1, 1am2a M2) )
H5 — J012(17 27 17m27 M2) )
Yy & memM(l,l,l,l), (24)

where the integrals Jo12(1,1,1,m?, M?) and Jo12(1,2,1,m?, M?) are given in eq. (3.20)
and Vimmar(1,1,1,1) in eq. (3.26) of ref. [[fl. We have checked all master integrals by
considering their evaluation in an asymptotic expansion around the three kinematical re-
gions m < M, m ~ M, and m > M. Altogether we computed up to 16 expansion terms
and found complete agreement with the results in the literature. As can be deduced from
the results of appendix [J, where more details are provided, the inclusion of about five ex-
pansion terms in each region provides jointly a good approximation over almost the whole
range in m/M.

In the case of charged boson exchange one gets in addition two simple master integrals

Wi = Wg(1,1,1,0,0), Wy = W5 (1,1,0,0,1), (2.5)



and five two-scale integrals

Hg=H/(0,1,1,1,0), H; =H}(0,1,1,1,-1), Hg = H/(1,1,0,1,0),
W3 =Wg(0,-1,1,1,1), Wy =Wg(1,1,1,0,1). (2.6)

As we will see in sections B and [, for the physical applications of this paper an expansion
for m > M of the integrals in eq. (R.6) is sufficient to obtain final results which in the
physical region are equivalent to the exact expressions.

3. On-shell mass renormalization constant

In this section we discuss the results for the on-shell mass renormalization counterterm.
The QCD corrections up to three loops can be found in refs. RI]-RF. The one-loop
electroweak and two-loop mixed corrections for light quarks can be found in refs. [Rf]
and [P7], respectively. In this case it is sufficient to evaluate the limiting behaviour for
mg < M? (where M represents a boson mass). The corrections of order acy for the top
quark have been considered in ref. [-[f]. In a recent paper [RJ] the two-loop relation
between a minimal subtracted and the on-shell mass has been considered in a more general
framework. However, the masses of the vector bosons have been neglected.

The relation between the bare mass, m?, and the one defined in the MS and on-shell

scheme, m; and my, is given by
’I’I’Lt = ZMS my — Zosmt (31)

In order to discuss the result for the mass renormalization constant it is convenient to

consider the finite ratio

Qg
2

g CcD (6% :
= — = s = 1+ 2Cpan  + — 2+ 5 Crap™, (3.2)
my h 7'(' TSy TSy

2

where sy = sinfyy is the sine of the Weinberg angle, Cp = (NS —1)/(2N,) with N, = 3

for SU(3) and

Z'?Y‘LN _ (1),ewz + Z(O),ew
Z7(7?) — HeW( )+ ZWeW(yW) + 7eW(yZ) + ZA ew 4 Ztad ew,
Zmlx _ ( ),mle 4 Z(l),mle + Z( ),mlx
an)’mlx _ nh]fmlx( ) + ZWII]IX( ) + ZZ le( ) + ZA mix + Z;?d,mix’ (33)
(1),mix (2)71111)(

with an analog separation for z, and zp, We furthermore introduce the notation

oy My My
yH_MH’ yW_MWa yZ_MZ’

2
To =@, Iw =-n@), Iz =—W@), Tu = (“—) |



The renormalization constant in the MS scheme is given by (see, e.g., ref. [[i])

. a 1/1 5 3 4 3 m?
ZM —1——C— a1 2.2 2.2 2 | 0 Mmy
Fae 47rsgve<4+4 S T VW T W T g
1 6o M2 1 545 3M%  3M3 my
_Z_3atSWMg_§at3W_§M2 2% +NM2 M7,

Looas o] 3 1555 9 N 9 m;
- | — == ’U S S
a2z, e\ 16 16 S gV W~ 7 M2,

1(9 21,5 3 5, |1 3 my N, m
(= - Se T 3.5
T (32 3 W T 5w T g W+8M2 T 5 Mz (3:5)
1/3 922M§ 3490 9 My 9OMZ ON. m
e (16+4 G TR T Rz TRz T 1 MR MG ) |

with a; = 1/(2swew), v = (1/2 — 4s3,/3)/(2swew) and ew = /1 — %, = My /M. For
convenience, in eq. (B.J) the contribution from the tadpole diagrams is displayed separately
in the second (O(«)) and last line (O(aas)). Furthermore, all term proportional to N,
originate from tadpole diagrams.

At this point a comment concerning the various gauge parameters is in order. In the
electroweak sector we adopt Feynman gauge for the W and Z boson, however, we allow
for a general gauge parameter £ for QCD defined via the gluon propagator

q"q”
Dy (q) = —i%. (3.6)
On general grounds the on-shell mass and also z,, has to be independent of ¢ which serves
as a welcome check for our calculation.

In eq. (B.3) the two-loop expression for z,, is split into contributions induced by the
Higgs, W and Z boson (including the corresponding Goldstone parts), the photon (A)
and the tadpole diagrams. In the following we present analytical results for the individual
contributions. As we will see in the discussion below it is sufficient to consider the limit
yw — oo and yz — oo in order to obtain agreement with the exact result below the percent
level. For this reason we show only the corresponding analytical expressions. Since the
Higgs boson mass is still unknown we present the exact result, but also handy expansions
in the three limits yy — 0, yg — 1 and yg — oo. Furthermore, for completeness also the
tadpole result 2124 is listed, which can be extracted from refs. [§, 27, B9

Compact expressions for the Higgs boson contribution to zg’ Y and zmix expressed

in terms of (known) master integrals are given in egs. (A1) and (A7) in appendix [A],

where also the results for the p-dependent terms z,(n) Hmix g z,(n) AHmix oh be found.

The expansions in the physically interesting regions read for the one-loop results

CD
P =1,

ew 2| 5 3L 1 Lg)\_ 7 3Ly _ 47 3L
26 =yév[——+—H+(——+—H>yi[+(——+—H)y}§+< +—H>yiz

—8 —10
) +0<yH>} ,



SHew _ 2 | 3 4 mv3 _1_ + 1 7"\/— n 1 7r\/§ 3
m1 = Yw 16 32 16751 39 96 H 1 9% 216 ) YHA
1 ™3\ _4 1 3\ _s e
+ (@ T 439 ) Yo+ (% 648 ) Yua +OWn1) |-

ZHeW——2 ,l+zi+ 734,33_}[ L73_7TL+ L,E_H 1 + 3m_ 1
mee =YW TR Ty 32732 )3 64gs, \214 64 102435,

Wew _ -2 1 1 Lw) 1 3 ,3Lw) 1 1 Iw) 1 1
= _— —_— B —_ —_— _— _— _— — O _—
Fm,oo yw[ 16+( 16+16>y$/v+<64+ 32)@3V+(12 16) + (-8)}’

w
Zew o |1 1 Lz\N1 =1 1 Lz\ 1 1 1 1 1
= — — - = —- == - — — — 40O =
Fmioe = Yw 32*( ) met\:mw) T 652 384@62+ 7
v | oLt (5 Lz 1 7_7rl 3 _Iz\1 .
Wl T2 Ry, 16 4 )7 64 32 ; 1024

122 1_1L+3L_3_’TL+ 5 _ Lz\ 1
W4 8y, | 167% 6475 9% 32 )7,

102475 16075 7r )1

Ajew
Zm

tad,ew _ =2 3 3ZH 1 1 3ZW @% 1 EW 1
Fm = Yw (32 2 )7 T\8T 78 )y, T\16 T 16 ) 7

Ne_o
- Ty%/Vy§-17 (37)

with gy, =1- 1/?%{. The subscripts 0, 1 and oo indicate the cases m; < My, Ty =~ My,
and m; > My w,z, respectively. The coefficients in front of fut are given by

—2
.o _ 3 (1).Hew _ 3w O Wew _—2 (1 1
2.2 2
(1), Zew _ yw n 5a;7 sty _ 3uisy L Aew _ _ S
32 16 16 Em 3’
—2 —2
(1).tadew _ =2 [ 3 3ymw 1 2.2 [ Yy 1 &_2 —2 3.8
Zm Z/W< 325%{ 8@“1” 16@%; + aysw 4522 3 + 4 Ywlm - (3.8)

The corresponding two-loop expressions are slightly more lengthy but still rather com-
pact. They read

Homie 2 9  33Ly 9Ly 32 49  185Ly 13Ty 7%\ _»
’ + | - Yo

mo0  TYWI T3 T 8T T 28 128 T 192

1152 288 192 192

21097 | 665Ly | 45Ly | 15w\ _, [ 4145731  45727Ly _881Ly  3797%\ _
18432 768 | 256 ' 256 1152000 28800 1920 1920

)

4652609 51199Ty  313L% 4972\ _g o
< 132000 14400 210 80 ) +0n)

m1 - T Uw) T 556 T 33 48 768 32 256 16 3 11527

Hmix _ 2 {133 Y_+<ln_37§) 2+(91n3 531)5276113(2#) V3 s
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where

3 6 3 36+ 3 6

+2(2—In3) [LSQ () — Lsy <2§>} +2 [LS:; () — Lsy (2;)} }

0.245815004513 ,

Y6:8—®+W—2+\/§{—4—W—W—3 27T1113_7T1I123

%

43
Sy = iLSQ (f) ~ 0.260434137632,
27 3
2
Lsy ( . ) ~ —2.144767212569 , (3.10)

and ¢ is Riemann’s zeta function. The definition of Ls;(z) is given in eq. (A.§). The p
dependence is determined through

(1) Hmix _ 2 [81 27Lx <17 15LH)

Fm.0 w1956~ 128 128 o4

219 63Lm \ 4
512 128 J7H

1629 81Ly \ _¢ 5009 231Ly
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Figure 3: (a) One-loop and (b) two-loop corrections to z,, as a function of 1/§,; = My /m;. The
solid (coloured) lines correspond to the highest available order for each case. The dotted curves
show lower-order results and nicely demonstrate the convergence. The exact result, which is plotted
(in black) over the whole 1/3; range, can be distinguished from the approximations only in small
gap around 1/%, ~ 1.5. For the renormalization scale ? = 7 has been chosen. In the plots the
contributions from the tadpole diagrams are not included.

—2 —2
(2),tad,mix _ —2 9 e 3 22 |9 |, 3| 9Ne o o 3192
Em W T2sgz, st Teag | T Tepz T 32 16 Jw¥H - (3.12)

Note that the result for z72 in the above expressions can easily be extracted from the
two-loop pure QCD result [R1].

Let us next discuss the numerical consequences of our result and compare the exact
expressions with the compact expansions. Actually the exact result from the W and Z
boson contribution is very well reproduced both by the large-top mass limit or the expansion
around M ~ Myy/z. At the physical values for the particle masses we find a deviation
from the exact result for the W and Z contribution below the percent level, which justifies
the use of the expansion for the numerical evaluations.

The result for the one-loop coefficient of a/(ws%,) is shown in figure ffa for y = m; as
a function of 1/, = My /m; where the tadpole contributions [[], which are numerically
quite large, have been subtracted for Feynman gauge. Furthermore the following input
values have been chosen

M = 165 GeV, My = 80.425 GeV, My =91.19 GeV, cw = My /My. (3.13)

Next to the (black) solid line which includes the exact result for the Higgs mass dependence
and the large-m; results for the W and Z contributions we also show the expansion terms
in the three kinematical regions (cf. eq. (B.7)) as solid lines. The lower-order results are
plotted as dotted lines in order to demonstrate the convergence of the approximations. It
can be seen that over almost the whole range of 3 the expansion terms provide a very
good approximation to the exact result, except for a small region with gy ~ 0.5...0.7
which corresponds to My ~ 250...300 GeV. We want to mention that in figure Ba also
the result of ref. [ is shown which in contrast to ours also takes into account the exact
dependence on My and M. No visible effect is observed.
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In figure b we show the two-loop coefficient of ac,/(7%s%,) as a function of 1/,

where again the tadpole contribution of eq. (B.9) is subtracted. The result containing
the exact My dependence (cf. eq. ([A.7)) is plotted together with the expansion results
of eq. (B.9). In addition to the highest expansion terms we show as dotted lines also the
lower-order ones. One can see how the approximations nicely improve while including step-
by-step the higher order terms. Note that at two-loop order it is not possible to separate
the result given in ref. [fj into the contributions from the individual bosons and the tadpole
contribution. Thus in order to check our results we again include the exact results from
ref. [[] in our plots (after subtracting the tadpole contributions). Again no difference is
visible. In fact, adopting from eq. (B.9) the large-; terms we obtain at the physical values
of My and My agreement with the exact result below the per cent level. Equivalently we
can use the expansion around m; ~ My, 7 and get results with the same level of accuracy.

The excellent description of the exact result by the expansion terms together with
the relative simplicity of the results in eq. (B.9) provides sufficient motivation to apply
in the next section the same approach to the wave function renormalization constant. In
particular this means that both exact results and expansions are considered for the Higgs
boson contributions and approximate formulae for large top quark mass are derived for the
remaining parts.

4. On-shell wave function renormalization constants

In this section we consider the wave function renormalization constants for the top quark
defined through eq. (L.4). Since ZZL 05 and Zé% 05 contain infra-red divergences which only

cancel when considering a physical quantity, it is not possible to form a finite ratio analog
oS

m

to 205 in eq. (B.4). Thus, in the following we consider the divergent contributions and the
finite parts separately. Furthermore, we switch to the vector and axial-vector contribution

using the formulae

vos 1/ _Rros L,08
230 = 5 (23 + 27%)
4,08 1 (_Ros L,08
Z; 9 <ZQ — 2 > ) (4.1)
where a non-zero contribution to ZZA 08 only arises from the W- and Z-boson.

In contrast to Z,?LS the wave function renormalization needs not to be gauge parameter
independent since it does not pose a physical quantity. As for the mass renormalization
constant, we choose Feynman gauge for the electroweak part but allow for arbitrary £ in
the QCD sector. We observe that £ drops out in the case of Z;/’OS
order, which is in analogy to QCD where only the three-loop result starts to depend on
¢ [B{]. On the other hand ZéA’OS is £ dependent starting from order ac.

In order to present the results in a compact form we introduce the notation

5% ca,,, (% MR
) e S ) ) mi
T—FZQ&)-F?CF 6—2+T+22’§ R

up to the two-loop

« (6%
22)(705 =1 + ?SCF(SZ;%))(;D + ; <

(4.2)
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with X = V, A and the analog splitting as in eq. (B.d). In particular, the results for the
individual coeflicients are split according to the dependence on the renormalization scale
and decomposed into contributions originating from the Higgs, W and Z bosons and the
photon? where for W and Z again the large-m; limit is adopted.

In contrast to the quotient z,,, where it was found convenient to use the MS-mass as
expansion parameter, for ZQX 08 the natural choice is to express the results in terms of the
on-shell mass. Thus, in analogy to eq. (B-4) we introduce the following notation:

= _ _ M
e vR Ll y il C i v
2
Lu n(yf), Lw =-W(yy), Lz =-In(yz), Lu =—In (%)
t

For the numerical value of the top quark mass we use m; = 175 GeV.

In the main text we again list the expansion terms and relegate the exact expression for
the Higgs boson contribution to the appendix (cf. eq. (B.J])). For the QCD result and the
pole part of the one-loop electro-weak corrections we obtain the following exact expressions

(see, e.g., ref. [B])

V,QCD 3 3 A,QCD
07, = <_4_e + ZL“t — 1> , 07, =0,
H,ew _ _& Aew _ _i
2,V 32 ’ 2,V 3 )
W,ewz_&_i W,ew:y_W_i
v 32 16’ 2,4 32 16’
2 2 2 )
Y Sy @ Sy v 1
fzeW:_3_V2V_ V[1/'6t _ I/Il/'6t , fzew__SSWatvt- (44)

The finite one-loop contributions read

Hew _ 2 1 L 1 5 19 3Ly 4 ud 3Ly 6
Zvo = Yw |~ o+ — Vi — (e — Tan ) Vi — | Tae — = ) vir

64 32 16 128 32 60 8
519 21Ly\ s 0
(320 16 ) v +O0n)|

H,ew __ 2 1 7T\/_ ﬂ—\/_ 1 571'\/_ 71_\/—
ZQVlyW[S 32 16 el KSRl Gl B 96+108 H,1

5 57r\/_ 513

+( 8 " 1296)yH1+<_%+194 >yH1+O(yH1)}7

Hew _ l L_H _3m 1 3 3Ly\ 1  15m 1
22, Voo — y 2 16 YH 32 16 %{ 128 y?{

+ ,l+_3LH L,_21WL+LL+O L

64 64 ) yy 2048 y3 160 y%, yYy

W,ew 2 1  Lw) 1 21 5 3Lw\ 1 47 1
%2,V 00 —yw[ (16+ 16 )2, 64 + 6 Z/€V+384Z/3V

3The tadpole diagrams do not contribute to the wave function renormalization.
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1
+0(—> 7
Yy
JZew _ 2| L (3 Lz 1+57f1+ 5 3Lzy1 w1 11
2Vieo YW T3 T \B2 716 ) y2 T 64 42 64 " 64 ) yL 51245 | 9645
1 2o | (3 3Lz\ 9n 1 3 Lz\ 1 3571
o= 242224 22 2 S_ZZ) 42t
i (yé) ﬂww[(‘l 8) 16yz+<8 2)y2+128y%
1 3Lz\ 1 357 1 11 1 5 2 1 Ly
Tt R b S T o (Sl N e
+< 4 32)y4z 2048 55 T 12045 (yE) o (4 8>
sm1 31  Wwdl (1 3Lz 1 6 1 11 (1
16yz 8yZ ' 12843 832 )yt 204845 4045 v )|
Aew 45%/V
Zov = 9
Wew _ 21 (1 Lw\ 1 (3 SLw) 1 (5 Lw) 1l 7 1
2400 T I 196 T\ 16 T 16 ) o2 64 " 32 )yd T\48 7 16 ) S, 384y,
1
*0(@”’
ZZew = AU+ S _l_,_li_,_ _l+£ L_5_ﬂ-i+ 1_2 i m 1
200 — MW T Ty, 8 4 )y 3243 T\48 16 ) yL ' 51245
11 1
_— — 4o =
120 yf, (yé) ’
(4.5)
and the scale-dependent terms are given by
2 2
Z(l),H,ew _ Yw ( ),A _ Sw
2,V 32 ’ 2V 3 )
2 2
S Wew _ Yw 1 JWew _ Vw1
2V 32 167 2.4 32 ' 167
2 2.2 2.2 2
D Zew _ Yw | 95w Ut Sw L), Zew _ AtUtSyy (4.6)
2,V 32 16 16 ‘2.4 8 '

The double-pole parts of the two-loop result are still quite compact and can be cast

into the form

Hmix 3y{2/[/
9o v 6—4 >
gW,mix _ 3yi2/[/ 3
2V 64 64’
; 3 3
Zmix __ yW
DV = ey + @ a; + 645th )

whereas for the single poles we obtain the expansions

)i

31 3Lm

256 128

57 9Ly

512 128

H, mix 2

2,V,0

+ 2y
64Z/H

2
gA,mix _ S_W
2,V 4
gW,mix _ _(2 + £)y‘24/ o 1 _5
2,4 128 64 '
2
Z,mix AtV S (1 - 5)

4

231 9Ly

640 32

6
H

)u

4Note, that the exact expressions for the Higgs boson results are given in eq. @)
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1557
+

(

1280

63LH

64

)

yh + O(yr)

)

Hmix 2 |1 37V/3 3 w3 3 5mv3 7T T3
hava = yw |51+ ag +<_@+ 61 ) vt (33 ~ 3er ) vt (358~ g ) Vi
15 573 7 5mV/3
+<5371728)y +(%2592)“““9(1”“)]’
Huix _ 2 | (T 3Lw\ 9r 1 (9  9Lm) 1 d5m 1
2Vico = YW 128 32 64 yu 128 7 64 ) yE  Bl2yf,
21  9Ly) 1 _ 637 1 1
L ZH o —=—
+ <256 256 ) tR02 5 <y%):| ’
Waix _ 2 | 7 (17 3Lw ) 1 (63  3Lw) 1 (5 O9Lw) 1 2+
2Vieo = yW[64 + (128 64 ) 2T (256 128 ) gt (64 64 ) o O (ygv)] ’
17 9 3Ly\ 1 157 1 15 9Lzy\ 1 2lx 1 1 1
thlX: 2 7 o~z A 0 Iz - -
2Vieo = YW [128 + (128 64 ) vz 256 y3, + (256 256) vE * 2018 v3 12845
1 2 2 61  9Lz\  27r 1 9 3Lz\ 1 1057 1
o= 2= 4 =2 _Z — _ il
+ <y;> + o s <128+ 32)+64 yz+< 3278 >y§ 512 y2
3 9Lz\ 1 1
(51550 ()
22 | (35 3Lz\ 91 9 1 4571 3 9Lz\ 1 1
“’”W[(us 32 ) 64y ' 32y% 5I2 y§+(32 128) +O<y%):|’
A,mix __ 17S€V
L T o2q
mix 342 3(—1+2 1— &)L 1 3(1— 5(1—¢)L 1
hZVAoo=y5v—(+§)+ (=1+2 ( é)wT+_( &, 5 OWT?
64 128 64 V2, 256 128 yh
Zanix _ 2 |(548) (A-@r (1 Lz\1-¢ 50-&r (7 Lz)\1-¢
R e T TR 8y: T \12 o) oL |
(4.8)
The scale dependence is ruled by the following coefficients:
(D), Hamix _ _3y12/v (D, Amix _ _ﬁ
2,V 32 ’ 2,V 9 7
2 2
RO Wmix Yy 3 pOWanix _ 2+ 8y (1 =)
4 32 327 2.4 64 32 7
2 2.2 2.2 2
R0, Zmix _ 3y Bagsyy  3visy R0, Zmix _ (1 = §arvrsiy (4.9)
v 32 32 32 7 2,4 16

Let us in the following discuss the results for the finite contribution to Z9S. The result
from the Higgs boson exchange expressed in terms of master integrals is given in eq. (B.)
of appendix [B. The expansion terms read

Hmix _ 2 (119 9Ly 3L% N 509  Lm 3Ly 13 2

2,v,0 w1512 256 256 2304 ' 192 128 ' 384 )7H
L (7627 _ 18Lm  31Ly  Tlm®\ 4 (739079 | 39533Lm  2861L% 121977
9216 512 128 763 ) Y% T\ 256000 " 57600 3840 3840 ) YH
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N 1962407  12253Ly 305L2
230400 3840 ’
Homix 2 9 Y* In3 = 245 3ln3 519 V3 27r V3 3
jmix _ _n_¥r 5 Ls
#2,v1 yw[ 768 24 T ( 2304) ( + 256) S+ g lss T
73 1n3 In?3 S, ( )
( 1152 ' 144 8 1152) VB
29 3Y6 In3 79\ » 27In3 531 3v3 27\ | 7V3 3
=2 2 — —L 22
+( ( 16 3456)7T +( 32 +128)5+ 3(3) 384"
7ln3 n23 9S8, | 47 ( )
T2 e T 32 576) 3+ Y1
7 Y* In3 = 1417\ , 9In3 669 V3 21 V3 3
=/ _ Y Lsa [ 22
+( 192 32 (48+20736)7r+< 32 +256)8”16 3(3)*1152
19 1n3 In*3 35S, 139 ( )
+< 52 192 32 3456) T3+
295  78677%  865S.  (55In3 113 5
3
+ (3456 186624 ' 768 < 2592 15552) ”\f) YHa
L (2T 436772 631S: 293 71N =
6912 186624 768 5184 | 7776 vt
4009  989037% 154635 2531n3 4447 5 6
- 3 o
+ (207360 5508720 | 23040 < 77760 466560) 7”[) via + OWira) |
Homix _ 2 (123 Ly 3Ly (15 2\ » 3(3) (15 9Ly 9M2) 1
#2,v,00 = YW [256 2 "1 T\ 2 )" T T\ e 32 )"
L (1585  329Ly 11L% LT 152 o 45((3)) 1 (2058  3llLy
1152 '~ 384 128 192 32 64 ) y% '\ 2304 1536
4872\ 1 29029  271Ly  11L% 13 32\ , 9@3)\ 1
+ T— + - | == ™+ — | 0
768 y3, T\ 115200 1920 512 384 32 64 ) oy
28439 1563Ly _ 28112\ 1 (1
153600 40960 20480 ) "y vS, )|’
wmix _ 2 |79 7 3¢B) (3 TLw 3Ly 7 3((B3)) L
#2,V.00 = YW [256 61 " 32 T\ 256 61 128 128 16 ) o
L (661 Lw 8Ly 57 15¢(3)\ L (317  Lw 9Ly 797  9((3)Y 1
512 256 256 = 96 32 )yt T\ 768 32 7 128 ' 576 16 ) 45,
1
+0 (_) ] 7
Yw
Zmix 2 | 107 @ 19  17Lz 3L% 5 5In2\ , 15¢(3)\ 1
#2,Vi00 = YW [256 128 " \T8 " 128 128 T\ a3 )" 64 /) y2
3 15Lz 15In2\ 1 757 11Lz | 11L% 1 32\ 5, 9%(3)\ 1
+ ( 16" 25 T TIw )Wy% + <4608 o6 52 T \7es 32 )7 T Tes )E
L (7837 _27Ly 4792\ 1 (1091 Ly 217 1oL
46080 6144 3072 ) "y3 T\ 76800 T 1280 ' 2048 ) 45 yL
2 2 815 _ 9Lz 9L2 125 32\ o  9¢(3) (27 27Lz 272\ 1
+ atsw[ 256 16 (128 2 )” Tt 2T Tw 32 )" ys
L (29, 67Lz 7Q+ 7ﬂ+51n2 L2 15CE)\ L (337 28Il 4572 1
288 ' 96 8 192 4 8 )2 192 512 256 y3
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N 34577 N 19L7 N 1Lz 4_3+ 3In2 24 9¢(3) 1oL
57600 480 256 768 16 32 )y v

22 |369 Lz 3L% 51 In2\ 3<() 3 9Lz  9In2 1
+t5w[256 3 1 + T + + + i

128 2 16 64 32

217 19Lz L%  49x° 991  41Lz 217In?2 1
_ _ T
2304 1536 768 3

1
144 96 32 192 ) y2 v3
17873 Lz | 11L% 65 3In2\ o 9¢(3)\ 1 1
b Tl - _ S ) Lo =—

+( 57600+480+256+<68 16)7r+ 32 y4Z+ v )|’

Amix _ {@ n <81H2 B Q) 2 4((3)} s

144 9 72 3
Womix _ 2 _i_%__ gi C()
#2,4,00 = W[ 956 32 32 T 256 | 32
L (13 9% 8Lw  3¢Lw Ly &Ly 137 T¢r  3¢(3)) L
256 ' 64 64 64 128 128 384 384 8 y2,
129 3 21L 21£L 5L3 5¢L3 1172 5¢én? 15¢(3 1
+____§+ W_fW_ W+£W+7T+£7T+C()_
512 512 256 256 256 256 192 192 32 y

W
193 29¢  5Lw | ELw N Ly &Ly  1x® 7% 3¢(3)\ 1 oL
2304 1152 96 48 128 128 144 96 16 8 ’

Zomix _ 9 3¢ 37 In2\ o, 7% 3¢(3) 3 Lz In2\ 1-¢
#2,A,00 atvtsw[lszrs <192 )" T s T

+(1 3¢ 3Ly 3tLz (175)L2’Z+(5_m_2)ﬂg+3<(3))i

8 16 32 32 32 32 2 4 Yy
L (595, 13 49Ly 5Ly 1132 5e2) 1
1152~ 128 384 128 192 64 Wy%
1 3¢ 5Lz €Lz (14+&L% 17 In2) » 3¢B)\ 1 1
Sy 2=Z 5 TSRy (2L PR 2 DY) o —) |, (410
+( 32 576 T 192 T 96 s \ms T )" "6 )z T\ (4.10)
The results covering the scale dependence are given by
LU Hmix _ 2 | 31 3L 3yh 5T n 9Lu\ 4 231 i 9Lu \
2vo T YW T8 T Ter T 32 256 '~ 64 ) UM 320 16
1557  63Lp \ s 10
+< 610 + ) )Z/H+O(Z/H) ;
(1), H,mix 2 1 31v/3 3 w3 57v3\ o
AN =i -5 =G0 () vt (16 o) v
7, T3 15 573 5mv/3
+(—a+—72> H1+<_%+ 4) (_ﬁ+1296 yia + 0|

S0 Hmix _ 2 | T 3L 97 _,9L_H Lo, o (2 9Lm) 1
2o TG TG T 30y, T\ 7 T 25647, 128 7 128 )y

LS o(L)
4096y, v/ |
(1),Wmix __ 2 _ l _ 1_7 3LW L _ ﬁ 3[I_W L _3 %—W L
#2,V,00 _yw[ 32 (64+ 2 )y \stT e ) T\ )W

ro (%))
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Z(l)’z’mix— 2 _1_7_ 3+3LZ i_’_ 157 i _£+9Lz i_ 217 i 1
2Viee T YW TGy 64 32 ) yZ @ 128y3 128 128 ) yi  1024y3  64y5

co( L] sz 61,902 20w (9 8Lz 1 105w
YL W64 T 16 32yz 16 4 )yl " 256y%
3 9L\ 1 1 2o 35 3Ly on 9 157
2N Lo = _ 29222z —
+( 8" 64 ) 7t <yg) +vtsw[ 64 16 ' 32y, 1643 | 25613

Z(l),A,mix _ 175%/[/
2V 12 7
(1), W,mix o | 3+2¢ 3 —6¢ 1-¢ 1 3 5Lw\ 1—¢&
= L —_— _—
#2,4 Wit P\ Ter T ) T\ T e )
5 L 1-— 1
TGN R YR
96 32 Yo Y
(1).Z.mix _ 2o |5 & (A-Hr (1 Lz\1-¢& 51—
2,4 - vesw [32 1 8y, 1673 ) 2 T w
7  Lz\1-¢ 1
-+ — o —+ 4.11
+< 96+32> T (y% ] (10
Z(Z),H,mix :3y‘2/V Z(Q),W,mix :3y‘2/V + i
2,V 32 2V 32 327
(2),Z,mix :3y‘2/v n 3afs‘2,v n 31135%1/ Z(Q),A,mix _Sw
2V 32 32 32 7 2V 2’
2),W,mix (2 + f)yQ 1- f 2),Z,mix (1 _ f)athQ
zéix = — 6l wo_ 37 zél‘ = — 1 W (4.12)

In figure [] we discuss our analytic results in numerical form. figure fla shows the finite
part of the one-loop contribution where the exact result is represented by the solid line
and the expansions are plotted as dotted curves. Similarly to z,, (cf. figure fi) it can be
seen that the dotted lines nicely converge to the exact curve after including successively
higher order expansion terms. As one can see, after taking into account the result from the
regions yg — 0, 1 and oo there remains only a quite small range for yg (1/yg ~ 1.5...2.0)
where the (black) solid curve is still visible and the simple expansions fail to provide good
approximations. The situation is very similar for the divergent 1/e and finite two-loop
contribution which are shown in Figs. fl(b) and f(c), respectively. Thus we can conclude
that it is possible to avoid the use of the quite complicated exact expressions for ZJ
but to adopt an adequate simple expansion. For Higgs boson masses outside the range
My =~ 250...300 GeV one can simply use the corresponding formula from eq. (f.170) while
for 250 GeV< My < 300 GeV a straightforward interpolation provides a sufficiently good
approximation.

It is interesting to mention that the result obtained in the gaugeless limit approximates
the full result within approximately 20% accuracy for Higgs boson masses between 100 GeV
and 800 GeV. For z,, the situation is similar once the tadpole contributions are discarded.
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Ly

Figure 4: (a) One-loop, (b) 1/€ pole and (c) constant part of the two-loop corrections to Z;/’OS as
a function of 1/yy = My /m;. The solid (coloured) lines correspond to the highest available order
for each case. The dotted curves show lower-order results and nicely demonstrate the convergence.
The exact result, which is plotted (in black) over the whole 1/yy range is only visible in a small
gap around 1/ypy = 2.

In case the latter are included the relative deviation between the full result and the one in
the gaugeless limit becomes smaller [f].

5. Conclusions

The renormalization constants constitute building blocks for the evaluation of quantum
corrections to various processes. In this paper the on-shell top quark mass and wave
function renormalization constants have been considered in the SM up to order as. The
inclusion of electroweak effects introduces a further scale into the problem, as compared
to the QCD or QED corrections, which makes the calculation of the integrals significantly
more complicated.

We expressed Z95 and Z;/ /408 a5 a linear combination of a handful master integrals
which are known analytically, however, contain quite involved functions. For the compli-
cated two-scale master integrals we applied the powerful method of asymptotic expansion
in three different kinematical regions, which leads to power expansions multiplied by sim-
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ple logarithms. We could reproduce the result for Z9OS available in the literature. The
expression for Z;/ /408 45 new and constitutes a building block, e.g., in the mixed elec-
troweak /QCD corrections for top quark pair production at threshold. We checked that
both for Z9S and Z;//A’OS

particular, it has been shown that the expansion for large top quark mass leads to compact

the simple expansions agree very well with the exact result. In

formulae which approximate the exact results quite precisely — almost up to the point
my = M with M = My, Mz of My. As far as the Higgs boson mass dependence is
concerned, also the expansions around m; = My and m; < My have been considered.
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H,ew H mix
W and z;)

A. Analytic results for z

The exact dependence on yg of the one-loop electroweak contribution reads

2

3  B,(0,1) By(1,0 1

Zn];{’ew _ y_W 24 p( ’2 ) _ p( ’2 ) —92(1= —5 Bp(l,l) R (Al)
16 | 2¢ 2m? 2ms3 4y

where the function By(n1,n2) corresponds to the one-loop on-shell integral with a internal

top quark and Higgs boson line

5 B ddk‘ e€VE A9
s ne) = | i G = M (9 2k .

The special cases needed in this paper are given by

2 € 2 2
By(0,1) = m® <%) <%+1+€(1+71T_2)+62 <1+%—@)) ,

Bp(1,0) = Bp(0,1)

m— M
B) 0 ()
M2 yH) m2 7T2 5 7_{_2 C(g) 3
By(1,1) = S {1+2e+(4+ﬁ)e +<8+€*T)E]
y%{ € H2 € 7_{_2 9 v v 2‘11
+<(4y?{7_1)) <W) {|:1+2E+<4+E)6:| 1+26(1+2E) 2+ 2¢ 3}7

(A.3)
where we have included the order e terms which are needed for the two-loop expressions,

and ¥, is a shorthand notation for (y = m/M):

1 1

1 1
g " <LSZ‘(7T) — §LSZ' (tl) - §LSZ‘ (tg)) s (A4)
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with

to = 2arccos

1
t1 = 2arccos <—> ,
2y

1
1- 2—y2> . (A.5)

The function Ls;(z) is defined through

Lsi(z) = — /OZ dzIn~? [2 sin (g)] . (A.6)

At two-loop order it is convenient to write the finite quantity 2™ 4 the form

zg,mlx — ag,mlx + bg,mlx’ (A?)

where allmix corresponds to the generic two-loop result and pllmix origins from counterterm
contributions and products of one-loop results. We obtain

Jmix _ T | (2—e+3e +4€%)(—1 +47y) Ha
m - =2

Ha
64 2% ms +(=1 E)mf

_ (1+6)(3—36+862)ﬂ _ (24 €+ 4e® 4 863 (—1 + 47%)

H

e i T °
N (—2+€— 36 — 4€°) + 7y (4+ 10e — 2¢* + 20€*) H;
2y, ™2

(—4—e— 76 —12%) + 77 (12 — 86* + 126%) v,

2e mi
N (4 —e—7¢ —126%) + 74 (8 + 1de + 6¢” +36¢°) V5
2ey%, m?
N 20-1+¢° V1 —2+4e—2 +75 (4—166+862)Y
e m e oK
2 2 —2 —2
Hmix Y | —18 — 3e + 15¢ 3 — 3(-1+27%) =2 = B+e(—1+2y%)+
mix AW 1 T - S SAHI T, L,
b 4 { 32¢2 gt T 32 ot + 16 mt
=18 —16e — 16¢” — *n” + 7% (24 + 8¢ +32¢° + 26°7°) | B,(1,0)
64e m2
3(—-1+37%) — 3 Yoy (—9 + 6€)—
( + Vi) 72, 4 +€+yH_g +697
32y 1675
—18 — 16¢ — 16¢* — 272 + 73 (108 + 24¢ + 337°
n € € €T _QyH( € 671') BP(LI)
64€yy;
_ — 344€)Lue (16 + 32¢ + en?) | yud
—1+453)| - 72, + ¢ ut _ T R,(1,1) 8. (A8
+( + yH)|: 64@3_16 ;Lt+ 32?3{ 128@%1 dyH P( ) ) ( )

ix

with Yy, ¥z and fut are defined in eq. (@) The poles which are still present in a%’m
H,mix .
and by, cancel in the proper sum.
Finally, the one- and two-loop coefficients determining the p dependence are given by
(W) Hew _ 3Yiv

“m 32

— 21 —



@ Hmix _ 2 | _°V 872, + 1) — — 2 632 + 1
+ i(21—2 +1)
12875, O ’
. 92
ZT(g),H,mlx _ Yw (Ag)

64

- 1—+/1-4y2
where K g = 735
14++/1-47%,

B. Analytic results for Zf " and Zf i

The one-loop contribution from the Higgs boson exchange diagram to Zf "/ew reads

2
H.ew y B,(1,0) 3 —2¢
Zyy " = ——3V2V A1 - ey pm? + 7 By(1,1)
3 — 2¢
= (By(0,1) — By(1,0) — 2miB,(1,1)) | , (B.1)

which — after inserting the results for By(ni,n2) from eq. (A.J), with m = m; and M =
Mz, and expanding in € — can be cast in the form

2
fH,ew — _y_W
2,V 392’
3y/1—4y% In(Ky) I
Hew 2 H 2 H 4 2
2oV ywl 6lyL 2y —1) + 64y‘}{( Y + 12y — 3)
32y%{ ’ ’
/1422
where yz and Ly are defined in eq. (£.d) and Ky = Li%iyf.
—12,
At two-loop order we again split ZZH "/OS into two parts,
Zf{/mix _ Ag,mix + Bf,mix’ (B3)

where A;"™ corresponds to the generic two-loop result and B, ™™ origins from counter-

term contributions and squared one-loop results. We obtain

qHmix _ v { (9 — e+ 12€% + 26€3) — (30 + 28¢ + 22¢? 4 1006 )yF + (56¢ 4 16¢* — 72¢* )y} Ha
! _ _dw) _ 4
64

(dyf — 1)e my
N (=6 + 5¢ — 13€* + 2¢%) + (14 — 22¢ + 96¢> — 160¢®)y3; Ho
o)

2ey% m3

(=6 + 5e — 13¢ + 2¢%) + (30 + 58> — 16¢*)y%;
24y — Veyy

+

- 22 —



N (=16 — 44e — 12€* + 56¢)yF; + (32¢ — 1606 )yy | Hs

(4y — 1)e m}
_ —2+20¢* — 546 Hy N —(6 4 12¢® + 14€3) 4 (14 — 12¢ + 726 — 726%)y% I
c m? i ’
N (6 — 16€ + 14€* — 4€”) 4 (=20 4 58 — 56¢” 4 16€)yzr Y1
(4y — 1)e mi
(=12 —5e — 13€> — 46€”) + (40 + 88¢ — 68¢> + 380€® )y + (—200€ + 352> — 744€” )y Yo
2(4y?, — 1)e my

N —(12 + 3¢ + 1162 + 54€%) + (60 + 5de — 662 + 3486 )y ¥
2(4yf — Deyjy

(=32 — 64€ 4 68¢® — 236€°)yF + (24e — 40€* + 16€° )y | Ya.
(4y% — 1)e m

+

BN

(—6 + 16¢ — 14¢? + 4€3) + (30 — 96¢ + 88¢? — 24¢®)y3; + (—32 + 14de — 128€% + 3263 )yy v

— 4 )
(v — Deyly

(B.4)

21 4 10¢ — (108 + 36c)yfy + (24 +8e)yh | 3e(7 — 36y7 + 8yh)

_ L2
16(4y% — 1) mt 32(4y2 — 1) wt

2
BQI—I,le _ yTW{

N —(21 4 10€ + 38€%) + (108 + 36¢ 4 180¢?)yF; — (24 + 8¢ + 32¢%)yy . (=7 + 36yF — Syt )er?
16(4y2, — 1)e 64(4y% — 1)

% BP(07 1)

2
mi
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16(4y7 — 1) " 32(4yf — 1) "
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(=74 52y% — 92u% + 8y%) )en?

* 64(dy7 — )yg

Note that the individual contributions Ag’mix and B2H M i) depend on the QCD
gauge parameter & which cancels in the proper sum. For simplicity these terms have already

been omitted in eqgs. (B.4) and (B.H).
From the formulae (B.4) and (B.F) it is straightforward to extract exact expressions

for the pole parts which are given by

BV =
: 64
i In (Kpy) 7 1 9Ly
hH,mlx .2 _ARH) g2 _
2V hw v Vi (256 128(1 —4y%{)> 2561/,

In (Kg) Ny 11 1 Oy 9
S - (=
T Yu\ 18 T 5a( —ayh)) T oayh 1285
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3 . In(Kp) 7 ] | (B6)

where Ky is defined after eq. (B.2).
For completeness we want to provide the exact result covering the renormalization

V,H,08

scale dependence for Z, . The corresponding coefficients are defined in analogy to the

ones for z, in eq. (B-4) and read

2
S, Hew _ Yw

2V 327
(D) Hmix _ iy
2V 327
. \/1—4y2 IH(KH) In(K
25 = y%v[ 12;;4 (o2 +7) - — 2B g oz
H 64y‘11{1 /11— 4y%{
3Ly 4 2 (79%{ -9)
——— 8y — 12 3) + —H——
+128y‘}{( Yu Yo +3) + 647 |’
2
2),mix 3y
A = = (B.7)

C. Master integrals

In this section we discuss the master integrals occuring in our calculation. The master
integrals needed for the neutral boson exchange which reduce to products of one-loop
integrals, to two-loop one-scale integrals or to two-loop vacuum integrals are given by (see,

e.g., refs. B2, BJ))
ot (8) [a+teae Toe(1-faw ) w0
HQZMQ(M—2>€{L+%+ +W—2+e(15 4C(3)+3Z_2>+O(62)]’

2 3

7
2 4
= m? () L (1 L) el (5 2 2 L)
3 = m2 2 2 p 202 42 Y
+

Y3 = B,(0,1)By(1,1), (C.1)

1
Qi = \IJZ - 4 — ?LSZ (tl) s (C2)

— 24 —



where ¥;, t; and ¢, are defined in egs. (A.4) and ([A.5).

As already mentioned in the main text, analytical results for the complicated two-scale
master integrals can be found in ref. [f]. We refrain from repeating them here. Instead we
perform expansions in the limits y — 0, ¥ — 1 and y — oo which we derived independently
with the help of asymptotic expansions [B4]. In many phenomenological applications it is
advantageous to use the handy approximation formulae in favour of the complicated exact
expressions.

The expansions in the three different limits require a strategy of its own. In the
case of a large boson mass M one obtains, next to on-shell, also vacuum integrals up to
two loops (both for charged and neutral boson exchange) which are, e.g., implemented in
MATAD [BF]. The subdiagrams contributing in this limit can be obtained in a completely
automated way with the help of exp [[L3, [L1].

In the limit y — 1, the case of a neutral boson exchange reduces to a simple Taylor
expansion. The resulting integrals are well studied within QCD and documented in a
program code [BJ). The expansion for y — 1 of the diagrams involving a W boson is more
complicated, which is due to the appearance of additional massless particles, the bottom
quarks. We did not perform the calculation of the diagrams in this limit since for the
practical applications only the limit m; > My, is needed.

Finally for the case y — 0o, which is the limit of main interest, a careful inspection of
the regions [B6, B7| contributing to the integral under consideration is in order.

In the following we present a pedagogical example which illustrates the procedure in
more detail. Let us consider the master integral Y, defined through

e2erm ddd]
Pp—_— / . (C3)
(imd/2)2 | (k% + 2kq) (12 = 2lq) ((k — 1)? + 2q(k = 1)) (12 — M?)
In the limit y — 0, i.e. m < M one has to consider the cases ( i) ]k\ ~ |l ~ M, (i) k| ~ m,

|i| ~ M, (iii) |k| ~ |I| ~ m, and (iv) |k| ~ |I] ~ M but with |k — ] ~ m, which we denote as
hard-hard (HH), soft-hard (SH), soft-soft (SS) and hard-soft (HS) region. In each region
one has to perform a simple Taylor expansion of each propagator in the small quantities.
E.g., if k is hard the propagator 1/(k?+ 2kq) is expanded in 2kq/k? since we have ¢ = m?2.

After adding the contributions from all regions one finally obtains the result for Yy
Yio = Ya(HH) + Y4(SH) + Y4 (SS) + Y4 (HS), (C.4)

where the integrals in the individual region have the form

A9kl (—2kq)™ (—21q)"™
Z Cnl n5/ k2)n3 ((k _ l)2 _ M2)n4 (l2)n5 ’

Akd (—2kq)™ (—=2k1)"2 (—21q)™8
SH/HS
Y4(SH/HS) = Z Cnl-..n5 / (k2 — M2)na (12 + 21q)™s ’

dkddl (k)™ (12)
= 2 C"I 3 / R+ 2he) (B = 2lq)™ (k=12 + 2a(k =)y )

ni,...,n
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We have used partial fractioning and rearranged the different propagators in a convenient
way. The indexes n; to ns run over appropriate integer values, and the Cn Y .ng are shorthand
notations for a set of functions depending on both scales M and m and the dimension d.

The first four terms of Y; expanded for y — 0 read

Y, = s ) L+ §+1n(2 + 1+ln( ) o+ §Jr21n( %))y
4,0 m2 262 2 Y 2 Y Yy 3 Yy Yy
)

29 2 6| 1 ? 2 2/ 2
o oY) )yt | -+ g+ +3(yY) + InT(y)+

)

7

2

w2 1lln(y?)\ o (8 7%  26In(y?)\ 4
9 4 7 - 477
< 6 T 2 >y+<9 3773 )y

244 5% 241log(y?)\ ¢ :
+<7—?+T>y}+0(y), (C.6)

where we refrain from listing the contributions of order e.

In the region y — oo, where M <« m a straightforward inspection reveals only two
different ranges for the integration momenta & and [. In the first one (hh) both momenta
are of order m, which now is hard; for the second one (hs) k is hard and [ is soft, i.e. of

order M. Thus Y4 can be written as
Y, = Y4(hh) + Y4(hS) , (C?)

where the following integrals occur

d9kd?l (M?)
Z (Cm N5 / k2 + qu)nl (l2 _ 2lq)"2 ((k; _ l)2 + 2q(k‘ _ l))ng (l2)n4

ni,...,n

d9kdd] (2k1)™ (—20q)™
_ hs

N1,e.5

(C.8)

Note that the collection of integrals in Y4(hh) and the ones in Y;(SS) are equivalent, and,
at the same time, equal to the ones one would need to solve in order to get an arbitrary
two loop O(a?) strong QCD correction. The first seven terms of Y expanded for y — oo
read

2\ 2€ 2
1 1 5 In(y®)\ 1 ™ 1 T
Y frg _— _— _— — 1 _— _—
4,00 <m2> {262 + |:2 Y + ( + 9 + 3 12 1 + 128y5

8y
1 ]1 19 7x? 7
— |+ = - — 2+2In2—In(y?)) —
120y6]6+2 g T (72 2m2 =y )y
2 1m?(y?)\ 1 1 In2 In(y?) In(y2)\ 1
+_3+7T_+n(y)_2_ _+n n@)\ = . n(y)_4
6 4 Yy 6 8 y3 6 Yy
19 2 In@?)\ « 131 In(y?) 1
—— — — 4+ (== o=y C.9
+<960 64 128 y5+ 3600 T 60 y6+ y7 (C-9)

Finally, let us consider the limit y — 1. Here the asymptotic expansion leads to only

one region which corresponds to a naive Taylor expansion in the quantity A = (m? — M?).
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This leads to the integrals of the type

ddkdd] (A)m 1
YF;C’”/ 7+ 2%q) (P = 20q) ((F — P+ 240k~ ) @y (1Y)

The first six terms in the expansion are given by

2\ 2¢€
Y4’1:(M) {1 +[5 ™3 7r\/§1+<71+27r\/§)y%+271'\/§3 A7/3

22 |23 T Y
1 873 1 19 In3 4 63 2 92
+(—+ m[)yf]E+—+(n—f—)m/§—zsg+{fﬂ—+—s2

m2 2¢ T2 6 27 81 /1T a3 U1

180 ' 729 2 33 36 ' 4
() [ (0 2) o[ 23

+ (—2;3 + %) wx/ﬁ} i+ {—% + gsg + <—421:33 + %) wx/ﬂ yt

+ {7% + %Sg + (f 871;93 + %) 7r\/§] yi + O(y?)} , (C.11)

with 1 = 1 —1/y?> = A/m? and S5 as defined in eq. (B-10).

We proceeded in an analog way for the remaining two integrals in eq. (E) Further-
more, for the seven integrals in egs. (R.§) and (R.6) we evaluated the phenomenological
limit y — oo. However, we refrain from listing the results explicitly.
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